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Abstract. We study minimal interactions in quantum systems characterized by position and
momentum operators defined as the direct product of a traceless finite matrix and an ordinary
canonical coordinate.

1. Introduction

There exists a large variety of quantum mechanical systems described by a complete set of
compatible(non-interferring) observables which include, as an obvious additional entity, a
multiple of areducibleidentity matrix. Consider, for instance, the system described by the
Jaynes—Cummings model in quantum optics which consists of a two-level atom interacting
with a cavity mode [1-3], the well known supersymmetric systemglis 1) dimensions

[4-8], and the familiar ones described by the Pauli wave equation. A common feature of
these systems is that their Hilbert spaces are acted upon by an identity matrix of the form
Ix2 ® I, wherel is an infinite-dimensional identity matrix. There exists a non-trivial way

of representing the position and momentum observables of the corresponding systems by
making them formally ‘traceless’ operators. This property permits the introduction of a large
number of new minimal interactions into the corresponding free particle wave equations.
To be specific, let us consider a general quantum system described by canonical coordinates
Q; and P; satisfying the Heisenberg algebra

[Qi, P;] = ihls;; (1.1

wherel = I,., ® I represents a&-block identity matrix such that we may realize these
operators in the general form

Qi =1®q; P; =1 ® p, 1.2)
where p; = —ihd/dq; and 7 is a constant: x n Hermitian matrix operator satisfying

7?2 = I,«,. From equation (1.2) we can defindabel A associated with each representation
of the Heisenberg algebra (1.1)

n = AQ;, P)=|Tral > 0. (1.3)

Representations satisfyiny = n correspond to the usual onés= I,.,) whereQ;, P; are

reducible operators fatr > 2. In this paper we shall be concerned with representations for

which A =0, i.e.n is an even integer an@;, P; here are formally ‘traceless’ operators.
The Hilbert space is abstractly defined as

H = L*(R% @ C". (1.4)

0305-4470/96/144005+14$19.5@C) 1996 IOP Publishing Ltd 4005
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It consists ofn-component column vectors
Va(q, 1)
Y(qg,t) = . (15)

Vn(q, 1)
where each component; is a complex valued function of théour-dimensional (flat)
spacetime coordinateg 7. The scalar product is given by

(¥, ®) = f vi(g, ®(q, ) d’q = f D ¥i(g, n¢i(g,ndq. (1.6)
VCR3 VCR3 727

The operatoiQ consists of three self-adjoint operataps whose domains are defined as

D(Q)) = {\If € H| QW) QW dg = Y laiy P dg < oo}. (1.7)
VCR3 VCR3 527
The momentum operata?; = —ih) @ 3/dg; can be defined as the Fourier transformation

of the position operatoQ; (j = 1,2, 3).

Minimal interactions can now be introduced by means of the prescriptipn—

P, —gA,, whereg is the coupling constany,, is a gauge fieldu = 0, 1, 2, 3). Note that
here Py = —ihl>,2> ® 3/3qo. This is the basis of the so-callg@uge principlewhereby the

form of the interaction is determined on the basis of local gauge invariance. The covariant
derivative D, = (i/h)(P, — gA,,) turns out to be of fundamental importance to determine
the field strength tensor of the theory. It will be the operator which generalizes from
electromagnetic-like interactions.

In section 2 we introduce the interaction of a quantum system as above with an
electromagnetic-like field specified by, by taking over the procedure of minimal
substitution. We then briefly examine the problem of gauge invariance of the theory. In
section 3 we consider thene-dimensional problem in the non-relativistic limit. Two cases
are discussed: a simple oscillator-like interaction and the interaction of a two-level atom with
a two-mode electromagnetic field in a configuration consisting of two counterpropagating
travelling waves.

Section 4 deals with the non-relativistic three-dimensional problem for the cases of a
spinless and a spié—particle in a central vector potential. Finally, section 5 considers the
relativistic problem for a Dirac particle. We study again the case of a%m’article ina
central vector potential taking as an example a Coulomb-like interaction. We also briefly
discuss thezZitterbewegungof the free electron.

2. Minimal interactions

In what follows we shall omit the symbol®’ when its presence is obvious as in
equation (1.2). Let us consider a quantum system described by the free-particle Hamiltonian
Ho = Ho(P;). We can incorporate a minimal interaction infiy by making the substitution

P, — T, =P, —gA, (2.1)

wherecPy = I,x, ® ihd/dt as usual A, (u = 0,1, 2,3) is a 4-vector potential and is
the corresponding coupling constant. Here

Au(q) = A (q) (2.2)

with the A% (q) Hermitian functions ol = (ct, ¢;), andz, = (I,xn, ), Where ther, are
n’ — 1 independent x n traceless Hermitian matrices. Note that in equation (2.2) there
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is a summation on the index = 1,...,n% The system will now be described by the
Schibdinger wave equation

Ho(IDW = (ihdo — g7aAG(q)) ¥ (2.3)

wherell, = P, — gA; (i =1, 2,3) and the wavefunctiow is itself an-component spinor.
The minimal replacement (2.1) must also satisfy the (formal) Hermiticity condition

HY(TT) = Ho(TT) (2.4)

which in general restricts the form of the vector field (2.2) (see, for instance, section 5).
The field strength is defined by the commutators between the components of the
covariant derivativeD,, = (i/h)I1,. By using equations (2.1) and (2.2) we find

ig g [. o N ig

fFij =[D;, Dj] = i {77(3in —0;A;) +[A;, n]o; — [Ai, n]0; + f[Aia Aj]}

i i R R i

fg i0o = [Dj, Do] = ﬁg {—'7(31'140) +[Ao, 7] — d0A; + fg[Ao, Ai]} : (2.5)

If we want to keep the field strength componefts and F;o antisymmetric and symmetric
under spatial inversiog — —q, we must demand the components of the gauge potetdial
and A; to be (up to a constant multiple of the identity matrix) symmetric and antisymmetric
fields, respectively. Note that equations (2.1)—(2.5) are in direct correspondence to the usual
Abelian case (arelectromagnetidgnteraction) and not to a new non-Abelian generalization.
The non-Abelian case follows straightforwardiyutatis mutandisas in the ordinary case
and, to be brief, we shall not treat it here.

The solution of the wave equation (2.3) describes completely the state of the particle
moving under the influence of the potenti (¢). This wave equation can be made gauge
invariant under the combined local gauge transformation

Au(@) — AL (@) = Au(q) +8A,(q)

V(g) — V'(g) = ¥(g) +38¥(q). (2.6)
In the above we consider an infinitesimal local phase transformatiow gy of the form

V(g) =U(q)¥(q) (2.7)
where

U(g) = T+igtat*(q) +O@?). (2.8)

The requirement is that

D,V'(q) =U(q)D,¥(q)

with

D, = 3 = 2 (Au(@) +54,@)). (2.9)
Equation (2.9) holds true if

$W(g) =igrat“ (@)W (q) (2.10)

8Ao0(q) = 1,008 (q) +ig[1a5“(q), Ao(q)]
§Ak(q) =Nt (q) + (@[T, N0k +ig[Tat (@), Ax(q)]
which corresponds to a direct generalization of a usual local Abelian gauge transformation.
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3. The one-dimensional case

A one-dimensional system is characterized by canonical coordinatasd P satisfying

[Q. P] =ihL (3.1)
Forn = 2 we may represent these operators in the general form

0 =1iq P =ip I=Iee! (3.2)
wherep = —ihd/dq, Trij = 0 and/? = I,,,. The free-particle Scidinger equation can

be written as

1 1 _
HoW = — P2WU = — p?W = iR, V. 3.3
0 m 2mp t ( )

As one would expect, the Hamiltoniat still describes a Scbdinger ‘free particle’, but
V¥ is a two-component wavefunction now.
In the presence of aelectromagneticoupling, equation (2.3) readg = ¢/c, e < 0)

1 2 _
HY = ( (P - 6A1> + er>xp — i, v (3.4)
2m c
where
A, =T, A%4q) (3.5)

with u = 0, 1. Here we require the representation to have as low a rank as possible. We
choose

n=mn Tq = (I2x2, Ti) (3.6)
where ther; are the Pauli matrices. Thus the Sitlinger equation becomes

2

1 e —dA1(q) . e
HY=(_"p?>— — (-in A _—_A? Ao | W
(Zmp 2mc< 1hn dg + {n, 1(61)}p)+2mc2 1(q) +e o)

= iho,W. (3.7)

3.1. The harmonic oscillator-like case
Let us choose a particular representation satisfying
Ap = 0 {‘L’3, H} =0 (38)

where{,} denotes the anticommutator afid= P — (e¢/c)A;. In this case the most general
gauge potential will have the form

A1(q) = Ui(@)t1 + U2(q) T2 (3.9)
whereU,, U, are general differentiable functions @f Thus equation (3.7) reduces to

1 — e [(dUi(g) . dUa(g) e
HY = —p?+ih— -
(Zmp +ih 2mce ( dg +its dg mc Uil@)p

2
+%(Uf(q) + Uzz(q))>\p = iho,W. (3.10)

Note that in this problem the sét{, H, t3, I1} defines a supersymmetric system [7]. Here
i(IT) = Tr[(z3 ® I) exp(—BH)] (well defined independently of > 0 if exp(—BH) is of
trace class) is an index which measures supersymmetry breaking [7].
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To be specific, we setg = 0, U2(g) = Ag (A a constant), and/1(¢) a general function
of g. Equation (3.10) becomes

1 e 2 e 212 _
HY=(_—(|p--U - 2 ) = iho, v 3.11
<2m(p - 1(61)) ome T 5024 ) : (3.11)
which corresponds to a harmonic oscillator system. By defining
1 e
= A i - U 3.12
a > ( q+ (p . 1(41))) (3.12)
with
[a,a']l =1 (3.13)
we get
H. 0
a-(" Q) 614
where the supersymmetric partner Hamiltonians are given by
eh\ eh\
H.=—@a+ 3+ —. 1
= @at)F o - (3.15)
The energy spectrum is then
hA ha
Ef=""m+1 B =""n (3.16)
mc mc
forn =0,1,.... Thus the ground stat€,_, has zero energy and is non-degenerate. All

excited states are doubly degenerate. This shows that supersymmetry in this system is
unbroken, see also [7].

3.2. Atom-field interaction in a cavity

As a second instance, let us consider the interaction of a two-level atom in a configuration
consisting of two counterpropagating travelling waves, for instance in a ring configuration
[9,10]. If the atom is assumed to propagate with momentpmin the z direction
perpendicular to the light field, the atom—field Hamiltonian before the atom gets into the
cavity is

Ho = HI((Atom) +_V(Atom) + H[((Fleld)

= %PZ + 713 + ha)(allal +azaz +1) (3.17)
where we have choseR = —ihnd/dq, with g the direction of the light field; = t3

and we have absorbed the kinetic energy of the atom associated with dlection in

the definition of Hy. In the abovewy, w are the atomic transition and field frequencies,
respectively. In what follows we assume that the two frequencies are close to resonance,
o ~ wg. Once the atom is inside the cavity, the interaction can be incorporated through the
minimal replacement

P,—>T,=P,— A, (3.18)
C
with (effective) gauge potential
Ap=0

7 2\ 1/2 ,
A= <i‘z/cw) {(azTy — CZI‘LL) expikg) + (agr, —a17y) exp(—ikq)} (3.19)
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where 7_, 7, are the pseudo-spin lowering and raising operators, respectively. From
equations (3.17)—(3.19) we get

1 _ _
H = —H% + %hwom + ha)(aial + aéaz + 1)

2m
1 oo 7ot i 1
:EP + ho'(a,a1 + azaz + 1) + Shwgts
+hQ{(alt_ + aty) explikq) + (ar7y + abt ) exp(—ikq))
—Tidwlalay exp(—2ikq) + aral exp(2ikq)} (3.20)
where
C
s _ 25 Sw = lew|—— 3.21
o =w+dw wy = wo + 28w ® Ieulhvw (3.21)
and
w \Y/2
Q= - 3.22
i (5) (322

with © = he/2mc. Note that in equation (3.22) we have obtained the correct value for
the coupling constan® being a factorv/2 larger than the one given for standing waves
[11]. The expression for the Hamiltonian (3.20) differs from the one given by Shore,
Meystre and Stenholm (SMS) [10]: the gauge potential (3.19) introduces ajshiift the
field frequency, and the detuning becomg&s— wy = w — wo — dw. Furthermore, apart
from the usual one-photon exchange interaction with coupling constanthere is a new
(momentum conservinggxchange modeontribution in H# with coupling constanti§w.
Note that for high enough field frequencies (visible optical frequendigd)ecomes small.
For instance, by choosing> ~ 10** Hz andV = 1 cn, one getsiw/Q ~ 0.01. Thus, in
the limit of high field frequencies, the SMS result is re-obtained.
Using the fact that
M=ala +aba» +1+ it A=—l£+aTa —ala (3.23)
= dd1 2002 283 = kdq 141 202 .

commute with each other and with the total Hamiltonfdnthe basis states can be labelled
as

i
M, N;m™, 1) = exp(qu> Im{”)im$)|T) (3.24)
with
M=mP +md +1+1c T=+1
N = p+hkm'"” —m®) 3.25
p 1 2
where we have chosen™ = m(f) =0,1,..., M+1—1/2. Note thatH involves generators

of the superalgebra(2/1) generated by the bilinear products

Si(Jr) = ‘L'_a[T Glj = a,»a; Sl-(i) = T44; T+Tg = %(IZXZ + ‘L’3). (326)

Here the exponential factors exkikg) are implicit in the field operators. In fadt displays
ansu(2) symmetry (subalgebra) whose generators are

Ji = alaz + 74 J_ = agal + T Jz = aial - a;az + %1'3 (3.27)
with
[Ji, J;] = i€ijicJe. (3.28)
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We find that
[Ji, M]=1[J;,N]=0 (3.29)

being (3.24) a basis of representation for the elements of this algebra.
To determine the energy spectrum we note tHat= P — (e/c)A; shares the same
symmetry asH:

[y, M] = [Ty, N] = 0. (3.30)

By using this fact we calculate the matrix elementsIdf in the basis (3.24) for given
values ofM, N. After squaring the corresponding/2x 2M diagonal matrix, we replace
it in equation (3.20) yielding the exact spectrummf With the definition (3.24) we find

(M, N;m§®, 7,[T11|M, N;m;™ ., 7)
=Rt(M + N = 2m” — L(ty + 2))k8, 01, 00085, 1,

ef %)
+( m, 5mff“).m?’)—187ﬂ’tb+2

¢
(tp) 1
—\/M —my" — 5(t + 2) 5mffu>mzrb>5ra,u,+z

+\/ m;}fb) + 18}’}’[[(;“>,m,(:b)+18.[“’fh72
—JM—m™ — 1z b (3.31)
b 2t m},r“),m,(fb) =2 | ’

In figure 1, we show the energy spectra of the interacting Hamiltofiafor a rubidium

atom (n = 1.4192x 10-22 g) in units ofiw, w = 215065 MHz (63p/2—61d/, transition),

for the particular caseV = 0. On the left we display the levels dif which are 21
degenerate. The energy levels @ depicted on the right by full lines are, excluding the
lowest one within each subspace, doubly degenerate. After the interaction is switched on,
only the excited states within each subspace are shifted as shown in the same figure.

4. Three dimensions

4.1. A spinless non-relativistic particle in a Coulomb field

We first consider the Hamiltonia# for a spinless particle moving in an electromagnetic
field A,

1 e \2
H=. (P — EA) +eAo (4.1)
whereP; = —ihnd/dq; andA; = 7, A%, with 7, Pauli matrices and?, A%, A3, A, vanishing
fields. Heref} = 71, while A? is a central vector field of the form
2 q'
A7 (q) = U(q); (4.2)
with U(g) a real function ofy = |g|. We obtain
G he d €2
H=—_V>— —(q*U U?(q). 4.3
- " omeq? dg @U@+, >U%9) (4.3)

It is clear that this Hamiltonian is not supersymmetric since the term proportional to
d/dg () involves a function which is different frorty.
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e E=35+0.8429x1G" AE=0.0067x10"
i E=35+40.3746X10° AE=0.0069x1G°
----------- E=3.5+0.0937 10" AE=0.0086x10"
M=3.5 £=35 AE=0
s E=2.540.3746 X107 AE=0.0050x10"
camo  E=25+0.0937 x10° AE=0.0062x10"
M=2.5 E=25 AE=0
e e E=1.5+0.0937 x10” AE=0,0087x10°
Mo15 m— =15 AE=0
M=05  m— oo E=05 AE=0

Figure 1. Schematic representation of tha/2degenerate energy levels fof = O in units of

hw and their splitting after the atom—field interaction is turned on. Notice that, except for the
lowest energy levels, there is a residual double degeneracy in the excited levels within each
subspace.

By choosingU = mZe/h, the Schddinger equation for stationary states leads to the
following two equations:
2 d? n R? 10+ 1) 1 Zeé?  Z2%*m
2mdg? = 2m g2 + 2n?

Thus the Hilbert spacgV = (¥, W_)} with

v, = (I/g) v_ = <w0_> (4.5)

consists of the complete set of bound and scattering states of the problem. Note that there is
a double degeneracy for the continuum solutions: the eigenvalugs > Z2¢*m /2h?) of

(4.4) are those satisfyinf = E, = E_, with W, the corresponding well known scattering
solutions for the scalar potentia#sZe?/q . The discrete solutions are described by

with energy eigenvalues

}w:&w. (4.4)

Z%e*m 1
Env=""m <1— nz) (4.6)
with n = 1,2, .... BecauseH is proportional to the square d? — (e/c)A we see that

E, > 0.

4.2. A spin% non-relativistic particle

The squared momentum of a spﬁnﬁree particle may be written in the form

3 2
P2= <Zpk®0k) . (47)
k=1

Thus the free-particle wave equation reads

1, 1 -
H\pzzmp\y=2m<;Pk®Uk>\IJ=lh8t\IJ (4.8)
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with P, = fp;. Under minimal interaction the Hamiltonian becomes

1 e 2
H= . ((Pk - EAk) ®ak) +eAg
1 e 2 e 1

where there is summation over the indi¢eg, k. In equation (4.9) we have chosen the same
two-dimensional matrix structure fap,, A, as in the previous case. From equation (2.5)
the magneticfield is defined by

ic i
By = ek Fyj = ﬁ&jk[ni, ;] = _ﬁgijk[Pi» Al (4.10)
Thus the Hamiltonian can be written as

1= () o) e
! 9¢

~om (Pk B SAk>2 + 2mc

whereS; = %ak, andg = 2 is the gyromagnetic constant. Hence this Hamiltonian represents
the interaction of a magnetic momegik/2mc)o with the magneticfield B felt in the rest
frame of the particle.

As an example let us consider again a central potential of the fgrra (0, 72U (¢)q).
The Schédinger equation for the system becomes

7.2 2 T
H\y=<—hv2+e Uz(q)—her3®(dl](Q)+2U(Q)<H+;L-a>>>w
q

B, ® S +eAp (4.12)

2m 2mc? 2mc dg
= iho,¥ (4.12)
where now the four-component spinor wavefunctibrhas the form
_( %@+
v = <<1>> . (4.13)

Note that the HamiltoniarHH in equation (4.12) is supersymmetric [12]. Hence, under a
particular (vector-like) minimal interactior] turns out to be supersymmetric onlygif= 2.
The supersymmetric partnef&. are in this case

’ _
e he (dU(q) 2U(g) 1
= + | —— 4+ —(I+ZL- ) 4.14
Valg) = 5 U(@) £ 5 ( dg + p +zL-o (4.14)
According to equation (2.5) themagneticfield is defined by

By = Fj =[A;, 1] — [Ai, 7]9;

__ ZUq(‘f) vl (4.15)

(i, j, k cyclic), i.e. it is proportional to the angular momentum of the particle.
The standard spin—orbit coupling in quantum mechanics due to an electric potential
V (g) takes the form

he dV(g)
gL — L. 4.16
oM Am2c2q  dg ? (4.16)
In contrast with this, the spin—orbit coupling required by (4.12) is
ges — V@ o (4.17)

m q
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If we now look for adirect identification

R dV(g) 5 2mc?
dmc? dg vt — e
we getU(g) = (4m?c3/he)q. This system corresponds to a harmonic oscillator with
frequencyw = 4mc?/h. This result can be interpreted by saying that the harmonic oscillator
would be supersymmetric if the ground-state energy is sufficient to create a pair [12, 13].

Notice that the spin—orbit coupling introduces a correction to the result given in (4.4)
for the Coulombfield,

Ze? he (2mZe/h 1 Ze? 1

_Le ., ne i o)) =-% (1+10.5) @19
q 2m q h q h

associated to thé@_, wavefunction component. Thus the resulting effective potential will

strongly depend on the values of the orbital and total angular momgeintaf the state

system (see section 5 for the solution of the corresponding relativistic problem).

U(g) — V(g) (4.18)

5. The relativistic case for a spin% particle

Our considerations can also be extended to relativistic quantum mechanics. In the case of a
Dirac particle we already count with a4 (formally) tracelessHamiltonian. Here it seems
natural to also look for appropriate>d4 (formally) tracelessmomentum and coordinate
operators. To this end we notice that the Dirac wave equation can be written as

HY = (cX - P +mc?p)V = iho, ¥ (5.1)

where
— 0
Py = —yspr = ihysV; X = Y50y = <Cg ) (5.2)
Ok
with
_ 0 I

Vs = (12x2 0 ) (5.3)

Thus we define
=114 ® Po=140®

Qo = l4x4 ® qo 0 = l4xa ® po (5.4)

0i=-ysQgqi Pi=-y5®p;
wherep, =ihd/dq". The operatorg,, P, satisfy the canonical commutation relations

[Qp.s Qv] = [P;u Pv] =0 [Q;,Ls Pv] = iﬁguv]I (55)
wherell =144, ® I andg = diag(—1, 1, 1, 1).

Next we introduce the minimal replacement
P,— P, — A, (5.6)
C

with

Au(g) =T.AUg) Al =4, (5.7)
where the matrice§', belong to the complete set of TBammamatrices

I4x4 1Yy iYuyu (U # 1) Vs 1Y5Y- (5.8)

By replacing equations (5.6) and (5.7) in equation (5.1) we get
HY = (cZk (Pk—gAk(q)> + mc2,3> W = (K0, — eAo(q))V. (5.9)
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Note that if we demand (formally}? to be an Hermitian operator we find that
[Ta: 2kl As(q) =0 (5.10)

which is a constraint on the form of the gauge potential
Equation (5.9) may be re-written as

(T“Dﬂ n ";_lc) w=0 (5.11)
where

Y0 =8 Tk = B3 (5.12)
Note also that, apart from the basic condition (2.9), gauge invariance will require

[Y*,U@gN]=0 (5.13)

which is a strong restriction on the space of allowed gauge transformations for a Dirac
particle. From (5.13) we find that the most general gauge transformétibas the form

U(q) = expig(t°(q) + ¢ *(q)B). (5.14)

On the basis of the equations (5.6)—(5.10) a variety of problems can be considered. As
an example, let us choose

. mZe

Ao@) =0 Aclg) =iy (5.15)

By writing
_ %+

v (%) 519

we see that for steady states equation (5.9) consists of two coupled equations
7 2
co - (p F im}_le q) b = (E :I:mcz)d);. (5.17)
q
After decoupling them we find
1, Zze? 1 Z2e*m o1 o 24
(Zmp :Fq(I—FEO'-L)—i—ZEz) O = (2mc?) T (ES—mc™)D.. (5.18)
This may as well be written in the compact form
1 Ze?

(2mp2 - ;K) U = (¢ — eq) ¥ (5.19)

with
Ez 2 2.2

€=5 5 €0 = ymc*(1+ Z%?) (5.20)

and
1 1 h
K=58 1+ﬁE-L =ﬁ,32-J—ﬂ/2 JEL+§2. (5.21)

Consider the non-relativistic limit. For positive energy solutions the nornd ofis small
in this limit and the wave equation reduces to (5.18)dar. Thene — ¢y is the eigenvalue
of the steady states of (4.12) with the corresponding potential given in (4.19).

By using the fact that

L xq+qx L =_2ihq (5.22)
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we find thatX is a constant of motion

[H,K]=0. (5.23)
In addition to this we have that
[J. K] =0. (5.24)

Thus we can construct simultaneous eigenfunction& pf72, K, Jz just as in the case of
the relativistic hydrogen atom [14]. From equation (5.21) we get

K*=J%+3 (5.25)
so the eigenvalues f are
K =20+ 3). (5.26)

The bound states are characterizedy> 0. In this case the wavefunctiorn. are
eigenfunctions ofL? with eigenvalued.(l+ + 1), I+ = j + % The solution of (5.18) is
then given by

D, (q) = (ql+,n'jja) = ) c(jjzs Lym, 59w 1, (D Yi,m, 0, 9)xs

my.,s

®_(q) = (gl—.n'jja) = Y c(jjai l-m_, 1)qw—11 (@Y m (6. 9)Xs- (5.27)

m_,s

Here c(...) are Clebsch—-Gordan coefficientg, ;. are radial wavefunctions of the non-
relativistic hydrogen atomy,, ., (8, ¢) are spherical harmonics and correspond to the

spinors
1 0
X12 = <0> X-1/2 = (1) . (5.28)

From (5.19) the energy eigenvalues are given by

1/2
k|2
E, =mc®|1+ Za2<1—>> n=012.... 5.29
( Za* (L= e (5.29)
The degeneracy of the energy levels is infinity: the levels,, i = 1,2,3,...,
satisfying
2 2
| lc2| (5.30)

(ny + k12— (ny + li2)?

have the same energy.
It is worth mentioning here that the Dirac oscillator [15] can also be re-obtained through
a minimal interaction of the form (5.6)—(5.7) in the Dirac equation. This is done by choosing

Ar(q) = iIBVS?Qk (5.31)

where w is the frequency for this oscillator. This gauge field gives rise to a harmonic
oscillator with a strong spin—orbit coupling which introduces, as in the previous case, an
infinite degeneracy. This oscillator has a hidden supersymmetry, responsible for the special
properties of its spectrum [16]. In fact we can easily see that by séftigy = (mcw/e)q in
equation (4.12) we re-obtain, up to a constant term in the Hamiltonian, the Dirac oscillator
in the non-relativistic limit. It is interesting to note that the vector field given in
equation (5.31), is a Hermitian operator. This feature is absent in Moshinski's approach
[15].
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5.1. The electron Zitterbewegung

We briefly discuss the&Zitterbewegung(trembling motion) of the Dirac electron in the
representation (5.4). To this end let us consider a free Dirac particle described by
equation (5.1). In the Heisenberg picture, the time derivative of an operatorT s&y
given by

dar i

— = =[H, T]. 5.32

& = lHT] (532)
We can easily see that both the coordinate and the momentum operatoist amstants
of the motion despite the fact that the particle is free. From (5.1), (5.4) and (5.32), the
equations of motion foQ, and P, are

do;,  2imc? dP,  2imc?
W R PeteR g = bR (5:33)
while from equations (5.32) and (5.33) we get
0 2/ dOy
=—(H— —c°P ). 5.34
dr2 h ( @ ¢ k) (5-34)

Let us define [17], for an observabie and for energyE
Ga= 3(G+HE 'GHE™) (5.35)

as the observable relative to which tAéterbewegungtakes place. By using (5.4) and
(5.35) we get

o=Q—Qa=mc*H'pQ — %‘:H—l(z —cPH™)

€p=P—Py=mH 'BP (5-36)
with

T.(é@) = T, (§p) = 0. (5.37)

This result strongly differs from the usual expressions [17]. In particular the (odd) position
and momentum operato€®, P are themselves present in the correspondittigrbewegung
coordinates.

6. Final comments

In this paper, we have studied minimal interactions in a wide class of quantum systems
characterized by position and momentum operators defined as the direct product of a
(Hermitian and unitary) finite traceless matrix and an ordinary canonical coordinate. This
approach allows us to obtain in a simple fashion supersymmetric systems in quantum
mechanics. However, we are not restricted only to this class of systems as was shown
in the examples given in sections 3.2 and 4.1. In fact, equations (2.1) and (2.2) also include
ordinary minimal interactions. In section 2 we worked out in detail the bound states of a
two-level atom interacting with a two-mode electromagnetic field in a particular familiar
configuration. This example suggests a useful gauge approach to some problems in cavity
QED. A promising natural development of the present work is its extension to relativistic
guantum field theory. We hope to report on such an extension elsewhere.
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