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Comments on minimal interactions in quantum mechanics
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Concepcíon, Casilla 4009, Concepción, Chile

Received 20 December 1995, in final form 1 April 1996

Abstract. We study minimal interactions in quantum systems characterized by position and
momentum operators defined as the direct product of a traceless finite matrix and an ordinary
canonical coordinate.

1. Introduction

There exists a large variety of quantum mechanical systems described by a complete set of
compatible(non-interferring) observables which include, as an obvious additional entity, a
multiple of areducibleidentity matrix. Consider, for instance, the system described by the
Jaynes–Cummings model in quantum optics which consists of a two-level atom interacting
with a cavity mode [1–3], the well known supersymmetric systems in(1 + 1) dimensions
[4–8], and the familiar ones described by the Pauli wave equation. A common feature of
these systems is that their Hilbert spaces are acted upon by an identity matrix of the form
I2×2 ⊗ I , whereI is an infinite-dimensional identity matrix. There exists a non-trivial way
of representing the position and momentum observables of the corresponding systems by
making them formally ‘traceless’ operators. This property permits the introduction of a large
number of new minimal interactions into the corresponding free particle wave equations.
To be specific, let us consider a general quantum system described by canonical coordinates
Qi andPj satisfying the Heisenberg algebra

[Qi, Pj ] = ih̄Iδij (1.1)

where I ≡ In×n ⊗ I represents an-block identity matrix such that we may realize these
operators in the general form

Qi = η̂ ⊗ qi Pj = η̂ ⊗ pj (1.2)

where pj = −ih̄∂/∂qj and η̂ is a constantn × n Hermitian matrix operator satisfying
η̂2 = In×n. From equation (1.2) we can define alabel 1 associated with each representation
of the Heisenberg algebra (1.1)

n > 1(Qi, Pj ) ≡ | Tr η̂| > 0. (1.3)

Representations satisfying1 = n correspond to the usual ones(η̂ = In×n) whereQi, Pj are
reducible operators forn > 2. In this paper we shall be concerned with representations for
which1 = 0, i.e.n is an even integer andQi , Pj here are formally ‘traceless’ operators.

The Hilbert space is abstractly defined as

H = L2(R3)⊗ Cn. (1.4)
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It consists ofn-component column vectors

9(q, t) =
ψ1(q, t)

...

ψn(q, t)

 (1.5)

where each componentψi is a complex valued function of thefour-dimensional (flat)
spacetime coordinatesq, t . The scalar product is given by

(9,8) ≡
∫

V⊂R3
9†(q, t)8(q, t)d3q =

∫
V⊂R3

n∑
i=1

ψ∗
i (q, t)φi(q, t)d3q. (1.6)

The operatorQ consists of three self-adjoint operatorsQi whose domains are defined as

D(Qi) =
{
9 ∈ H|

∫
V⊂R3

(Qi9)
†Qi9 d3q =

∫
V⊂R3

n∑
j=1

|qiψj |2 d3q < ∞
}
. (1.7)

The momentum operatorPj = −ih̄η̂ ⊗ ∂/∂qj can be defined as the Fourier transformation
of the position operatorQj (j = 1, 2, 3).

Minimal interactions can now be introduced by means of the prescriptionPµ →
Pµ−gAµ, whereg is the coupling constant,Aµ is a gauge field(µ = 0, 1, 2, 3). Note that
hereP0 = −ih̄I2×2 ⊗ ∂/∂q0. This is the basis of the so-calledgauge principlewhereby the
form of the interaction is determined on the basis of local gauge invariance. The covariant
derivativeDµ ≡ (i/h̄)(Pµ − gAµ) turns out to be of fundamental importance to determine
the field strength tensor of the theory. It will be the operator which generalizes from
electromagnetic-like interactions.

In section 2 we introduce the interaction of a quantum system as above with an
electromagnetic-like field specified byAµ by taking over the procedure of minimal
substitution. We then briefly examine the problem of gauge invariance of the theory. In
section 3 we consider theone-dimensional problem in the non-relativistic limit. Two cases
are discussed: a simple oscillator-like interaction and the interaction of a two-level atom with
a two-mode electromagnetic field in a configuration consisting of two counterpropagating
travelling waves.

Section 4 deals with the non-relativistic three-dimensional problem for the cases of a
spinless and a spin-1

2 particle in a central vector potential. Finally, section 5 considers the
relativistic problem for a Dirac particle. We study again the case of a spin-1

2 particle in a
central vector potential taking as an example a Coulomb-like interaction. We also briefly
discuss theZitterbewegungof the free electron.

2. Minimal interactions

In what follows we shall omit the symbol ‘⊗’ when its presence is obvious as in
equation (1.2). Let us consider a quantum system described by the free-particle Hamiltonian
H0 = H0(Pj ). We can incorporate a minimal interaction intoH0 by making the substitution

Pµ → 5µ = Pµ − gAµ (2.1)

wherecP0 = In×n ⊗ ih̄∂/∂t as usual,Aµ (µ = 0, 1, 2, 3) is a 4-vector potential andg is
the corresponding coupling constant. Here

Aµ(q) = τaA
a
µ(q) (2.2)

with theAaµ(q) Hermitian functions ofq = (ct, qj ), andτa = (In×n, τr ), where theτr are
n2 − 1 independentn × n traceless Hermitian matrices. Note that in equation (2.2) there
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is a summation on the indexa = 1, . . . , n2. The system will now be described by the
Schr̈odinger wave equation

H0(Π)9 = (ih̄∂0 − gτaA
a
0(q))9 (2.3)

where5i = Pi − gAi (i = 1, 2, 3) and the wavefunction9 is itself an-component spinor.
The minimal replacement (2.1) must also satisfy the (formal) Hermiticity condition

H
†
0(Π) = H0(Π) (2.4)

which in general restricts the form of the vector field (2.2) (see, for instance, section 5).
The field strength is defined by the commutators between the components of the

covariant derivativeDµ ≡ (i/h̄)5µ. By using equations (2.1) and (2.2) we find

ig

h̄
Fij ≡ [Di,Dj ] = ig

h̄

{
η̂(∂jAi − ∂iAj )+ [Aj , η̂]∂i − [Ai, η̂]∂j + ig

h̄
[Ai,Aj ]

}
ig

h̄
Fi0 ≡ [Di,D0] = ig

h̄

{
−η̂(∂iA0)+ [A0, η̂]∂i − ∂0Ai + ig

h̄
[A0, Ai ]

}
. (2.5)

If we want to keep the field strength componentsFij andFi0 antisymmetric and symmetric
under spatial inversionq → −q, we must demand the components of the gauge potentialA0

andAi to be (up to a constant multiple of the identity matrix) symmetric and antisymmetric
fields, respectively. Note that equations (2.1)–(2.5) are in direct correspondence to the usual
Abelian case (anelectromagneticinteraction) and not to a new non-Abelian generalization.
The non-Abelian case follows straightforwardlymutatis mutandisas in the ordinary case
and, to be brief, we shall not treat it here.

The solution of the wave equation (2.3) describes completely the state of the particle
moving under the influence of the potentialAµ(q). This wave equation can be made gauge
invariant under the combined local gauge transformation

Aµ(q) → A′
µ(q) = Aµ(q)+ δAµ(q)

9(q) → 9 ′(q) = 9(q)+ δ9(q). (2.6)

In the above we consider an infinitesimal local phase transformation for9(q) of the form

9 ′(q) = U(q)9(q) (2.7)

where

U(q) = I + igτaζ
a(q)+ O(ζ 2). (2.8)

The requirement is that

D′
µ9

′(q) = U(q)Dµ9(q)

with

D′
µ = η̂∂µ − ig

h̄
(Aµ(q)+ δAµ(q)). (2.9)

Equation (2.9) holds true if

δ9(q) = igτaζ
a(q)9(q) (2.10)

δA0(q) = τa∂0ζ
a(q)+ ig[τaζ

a(q), A0(q)]

δAk(q) = η̂τa∂kζ
a(q)+ ζ a(q)[τa, η̂]∂k + ig[τaζ

a(q), Ak(q)]

which corresponds to a direct generalization of a usual local Abelian gauge transformation.
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3. The one-dimensional case

A one-dimensional system is characterized by canonical coordinatesQ andP satisfying

[Q,P ] = ih̄I. (3.1)

For n = 2 we may represent these operators in the general form

Q = η̂q P = η̂p I = I2×2 ⊗ I (3.2)

wherep = −ih̄∂/∂q, Tr η̂ = 0 andη̂2 = I2×2. The free-particle Schrödinger equation can
be written as

H09 = 1

2m
P 29 = 1

2m
p29 = ih̄∂t9. (3.3)

As one would expect, the HamiltonianH still describes a Schrödinger ‘free particle’, but
9 is a two-component wavefunction now.

In the presence of anelectromagneticcoupling, equation (2.3) reads(g ≡ e/c, e < 0)

H9 =
(

1

2m

(
P − e

c
A1

)2

+ eA0

)
9 = ih̄∂t9 (3.4)

where

Aµ = τaA
a
µ(q) (3.5)

with µ = 0, 1. Here we require the representation to have as low a rank as possible. We
choose

η̂ ≡ τ1 τa = (I2×2, τi) (3.6)

where theτi are the Pauli matrices. Thus the Schrödinger equation becomes

H9 =
(

1

2m
p2 − e

2mc

(
−ih̄η̂

dA1(q)

dq
+ {η̂, A1(q)}p

)
+ e2

2mc2
A2

1(q)+ eA0

)
9

= ih̄∂t9. (3.7)

3.1. The harmonic oscillator-like case

Let us choose a particular representation satisfying

A0 = 0 {τ3,5} = 0 (3.8)

where{ , } denotes the anticommutator and5 = P − (e/c)A1. In this case the most general
gauge potential will have the form

A1(q) = U1(q)τ1 + U2(q)τ2 (3.9)

whereU1, U2 are general differentiable functions ofq. Thus equation (3.7) reduces to

H9 =
(

1

2m
p2 + ih̄

e

2mc

(
dU1(q)

dq
+ iτ3

dU2(q)

dq

)
− e

mc
U1(q)p

+ e2

2mc2
(U2

1 (q)+ U2
2 (q))

)
9 = ih̄∂t9. (3.10)

Note that in this problem the set{H, H, τ3,5} defines a supersymmetric system [7]. Here
i(5) = Tr[(τ3 ⊗ I ) exp(−βH)] (well defined independently ofβ > 0 if exp(−βH) is of
trace class) is an index which measures supersymmetry breaking [7].
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To be specific, we setA0 = 0, U2(q) = λq (λ a constant), andU1(q) a general function
of q. Equation (3.10) becomes

H9 =
(

1

2m

(
p − e

c
U1(q)

)2

− eh̄λ

2mc
τ3 + e2λ2

2mc2
q2

)
9 = ih̄∂t9 (3.11)

which corresponds to a harmonic oscillator system. By defining

a ≡ 1√
2mh̄λ

(
λq + i

(
p − e

c
U1(q)

))
(3.12)

with

[a, a†] = I (3.13)

we get

H =
(
H− 0
0 H+

)
(3.14)

where the supersymmetric partner Hamiltonians are given by

H∓ = eh̄λ

mc
(a†a + 1

2)∓ eh̄λ

2mc
. (3.15)

The energy spectrum is then

E+
n = eh̄λ

mc
(n+ 1) E−

n = eh̄λ

mc
n (3.16)

for n = 0, 1, . . . . Thus the ground stateE−
n=0 has zero energy and is non-degenerate. All

excited states are doubly degenerate. This shows that supersymmetry in this system is
unbroken, see also [7].

3.2. Atom–field interaction in a cavity

As a second instance, let us consider the interaction of a two-level atom in a configuration
consisting of two counterpropagating travelling waves, for instance in a ring configuration
[9, 10]. If the atom is assumed to propagate with momentumpz in the z direction
perpendicular to the light field, the atom–field Hamiltonian before the atom gets into the
cavity is

H0 = H
(Atom)
K + V (Atom) +H

(Field)
K

= 1

2m
P 2 + h̄ω0

2
τ3 + h̄ω(a†

1a1 + a
†
2a2 + I) (3.17)

where we have chosenP = −ih̄η̂∂/∂q, with q the direction of the light field,η̂ = τ3

and we have absorbed the kinetic energy of the atom associated with thez direction in
the definition ofH0. In the aboveω0, ω are the atomic transition and field frequencies,
respectively. In what follows we assume that the two frequencies are close to resonance,
ω ∼ ω0. Once the atom is inside the cavity, the interaction can be incorporated through the
minimal replacement

Pµ → 5µ = Pµ − e

c
Aµ (3.18)

with (effective) gauge potential

A0 = 0

A1 =
(
h̄c2

Vω

)1/2

{(a2τ+ − a
†
1τ−) exp(ikq)+ (a

†
2τ− − a1τ+) exp(−ikq)} (3.19)
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where τ−, τ+ are the pseudo-spin lowering and raising operators, respectively. From
equations (3.17)–(3.19) we get

H = 1

2m
52

1 + 1
2h̄ω0τ3 + h̄ω(a†

1a1 + a
†
2a2 + I)

= 1

2m
P 2 + h̄ω′(a†

1a1 + a
†
2a2 + I)+ 1

2h̄ω
′
0τ3

+h̄�{(a†
1τ− + a2τ+) exp(ikq)+ (a1τ+ + a

†
2τ−) exp(−ikq)}

−h̄δω{a†
1a2 exp(−2ikq)+ a1a

†
2 exp(2ikq)} (3.20)

where

ω′ = ω + δω ω′
0 = ω0 + 2δω δω = |eµ| c

h̄V ω
(3.21)

and

� = |µ|
(
ω

h̄V

)1/2

(3.22)

with µ = h̄e/2mc. Note that in equation (3.22) we have obtained the correct value for
the coupling constant� being a factor

√
2 larger than the one given for standing waves

[11]. The expression for the Hamiltonian (3.20) differs from the one given by Shore,
Meystre and Stenholm (SMS) [10]: the gauge potential (3.19) introduces a shiftδω in the
field frequency, and the detuning becomesω′ − ω′

0 = ω − ω0 − δω. Furthermore, apart
from the usual one-photon exchange interaction with coupling constant ¯h�, there is a new
(momentum conserving)exchange modecontribution inH with coupling constant ¯hδω.
Note that for high enough field frequencies (visible optical frequencies)δω becomes small.
For instance, by choosingω ∼ 1011 Hz andV = 1 cm3, one getsδω/� ∼ 0.01. Thus, in
the limit of high field frequencies, the SMS result is re-obtained.

Using the fact that

M̂ ≡ a
†
1a1 + a

†
2a2 + I + 1

2τ3 N̂ ≡ − i

k

d

dq
+ a

†
1a1 − a

†
2a2 (3.23)

commute with each other and with the total HamiltonianH , the basis states can be labelled
as

|M,N;m(τ), τ ) ≡ exp

(
i

h̄
pq

)
|m(τ)1 〉|m(τ)2 〉|τ 〉 (3.24)

with

M = m
(τ)

1 +m
(τ)

2 + 1 + 1
2τ τ = ±1

N = p + h̄k(m(τ)1 −m
(τ)

2 ) (3.25)

where we have chosenm(τ) ≡ m
(τ)

1 = 0, 1, . . . ,M+1−τ/2. Note thatH involves generators
of the superalgebrau(2/1) generated by the bilinear products

S
(+)
i = τ−a

†
i G

j

i = aia
†
j S

(−)
i = τ+ai τ±τ∓ = 1

2(I2×2 ± τ3). (3.26)

Here the exponential factors exp(±ikq) are implicit in the field operators. In fact̂M displays
an su(2) symmetry (subalgebra) whose generators are

J+ = a
†
1a2 + τ+ J− = a

†
2a1 + τ− J3 = a

†
1a1 − a

†
2a2 + 1

2τ3 (3.27)

with

[Ji, Jj ] = iεijkJk. (3.28)
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We find that

[Ji, M̂] = [Ji, N̂ ] = 0 (3.29)

being (3.24) a basis of representation for the elements of this algebra.
To determine the energy spectrum we note that51 = P − (e/c)A1 shares the same

symmetry asH :

[51, M̂] = [51, N̂ ] = 0. (3.30)

By using this fact we calculate the matrix elements of51 in the basis (3.24) for given
values ofM, N . After squaring the corresponding 2M × 2M diagonal matrix, we replace
it in equation (3.20) yielding the exact spectrum ofH . With the definition (3.24) we find

(M,N;m(τa)a , τa|51|M,N;m(τb)b , τb)

= h̄τ (M +N − 2m(τb)b − 1
2(τb + 2))kδ

m
(τa )
a ,m

(τb)

b

δτa,τb

+ef
c

(√
m
(τb)
b δ

m
(τa )
a ,m

(τb)

b −1
δτa,τb+2

−
√
M −m

(τb)
b − 1

2(τb + 2) δ
m
(τa )
a ,m

(τb)

b

δτa,τb+2

+
√
m
(τb)
b + 1δ

m
(τa )
a ,m

(τb)

b +1
δτa,τb−2

−
√
M −m

(τb)
b − 1

2τb δm(τa )a ,m
(τb)

b

δτa,τb−2

)
. (3.31)

In figure 1, we show the energy spectra of the interacting HamiltonianH for a rubidium
atom (m = 1.4192×10−22 g) in units ofh̄ω, ω = 21 506.5 MHz (63p3/2–61d3/2 transition),
for the particular caseN = 0. On the left we display the levels of̂M which are 2M
degenerate. The energy levels ofH0 depicted on the right by full lines are, excluding the
lowest one within each subspace, doubly degenerate. After the interaction is switched on,
only the excited states within each subspace are shifted as shown in the same figure.

4. Three dimensions

4.1. A spinless non-relativistic particle in a Coulomb field

We first consider the HamiltonianH for a spinless particle moving in an electromagnetic
field Aµ

H = 1

2m

(
P − e

c
A

)2
+ eA0 (4.1)

wherePi = −ih̄η̂∂/∂qi andAi = τaA
a
i , with τa Pauli matrices andA0

i , A
1
i , A

3
i , A0 vanishing

fields. Hereη̂ ≡ τ1, while A2
i is a central vector field of the form

A2
i (q) = U(q)

qi

q
(4.2)

with U(q) a real function ofq = |q|. We obtain

H = − h̄2

2m
∇2 − τ3

h̄e

2mcq2

d

dq
(q2U(q))+ e2

2mc2
U2(q). (4.3)

It is clear that this Hamiltonian is not supersymmetric since the term proportional to
d/dq( ) involves a function which is different fromU .
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Figure 1. Schematic representation of the 2M degenerate energy levels forN = 0 in units of
h̄ω and their splitting after the atom–field interaction is turned on. Notice that, except for the
lowest energy levels, there is a residual double degeneracy in the excited levels within each
subspace.

By choosingU = mZe/h̄, the Schr̈odinger equation for stationary states leads to the
following two equations:{

− h̄2

2m

d2

dq2
+ h̄2

2m
l(l + 1)

1

q2
∓ Ze2

q
+ Z2e4m

2h̄2

}
ψ∓ = E∓ψ∓. (4.4)

Thus the Hilbert space{9 = (9+, 9−)} with

9+ =
(
ψ+
0

)
9− =

(
0
ψ−

)
(4.5)

consists of the complete set of bound and scattering states of the problem. Note that there is
a double degeneracy for the continuum solutions: the eigenvaluesE (E > Z2e4m/2h̄2) of
(4.4) are those satisfyingE = E+ = E−, with 9± the corresponding well known scattering
solutions for the scalar potentials±Ze2/q . The discrete solutions are described by9+
with energy eigenvalues

En = Z2e4m

2h̄2

(
1 − 1

n2

)
(4.6)

with n = 1, 2, . . . . BecauseH is proportional to the square ofP − (e/c)A we see that
En > 0.

4.2. A spin-12 non-relativistic particle

The squared momentum of a spin-1
2 free particle may be written in the form

P 2 =
( 3∑
k=1

Pk ⊗ σk

)2

. (4.7)

Thus the free-particle wave equation reads

H9 = 1

2m
P 29 = 1

2m

( ∑
k

Pk ⊗ σk

)2

9 = ih̄∂t9 (4.8)
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with Pk = η̂pk. Under minimal interaction the Hamiltonian becomes

H = 1

2m

((
Pk − e

c
Ak

)
⊗ σk

)2
+ eA0

= 1

2m

(
Pk − e

c
Ak

)2
− i

e

mc
εijk[Pi, Aj ] ⊗ 1

2σk + eA0 (4.9)

where there is summation over the indicesi, j , k. In equation (4.9) we have chosen the same
two-dimensional matrix structure forPµ, Aµ as in the previous case. From equation (2.5)
the magneticfield is defined by

Bk ≡ 1
2εijkFij = ic

2h̄e
εijk[5i,5j ] = − i

h̄
εijk[Pi, Aj ]. (4.10)

Thus the Hamiltonian can be written as

H = 1

2m

((
Pk − e

c
Ak

)
⊗ σk

)2
+ eA0

= 1

2m

(
Pk − e

c
Ak

)
2 + ge

2mc
Bk ⊗ Sk + eA0 (4.11)

whereSk ≡ 1
2σk, andg = 2 is the gyromagnetic constant. Hence this Hamiltonian represents

the interaction of a magnetic moment(h̄e/2mc)σ with the magneticfield B felt in the rest
frame of the particle.

As an example let us consider again a central potential of the formAµ = (0, τ2U(q)q̂).
The Schr̈odinger equation for the system becomes

H9 =
(

− h̄2

2m
∇2 + e2

2mc2
U2(q)− h̄e

2mc
τ3 ⊗

(
dU(q)

dq
+ 2U(q)

q

(
I + 1

h̄
L · σ

)))
9

= ih̄∂t9 (4.12)

where now the four-component spinor wavefunction9 has the form

9 =
(
8+
8−

)
. (4.13)

Note that the HamiltonianH in equation (4.12) is supersymmetric [12]. Hence, under a
particular (vector-like) minimal interaction,H turns out to be supersymmetric only ifg = 2.
The supersymmetric partnersV± are in this case

V±(q) = e2

2m
U2(q)± h̄e

2m

(
dU(q)

dq
+ 2U(q)

q

(
I + 1

h̄
L · σ

))
. (4.14)

According to equation (2.5) themagneticfield is defined by

Bk ≡ Fij = [Aj , η̂]∂i − [Ai, η̂]∂j

= −2U(q)

q
τ3Lk (4.15)

(i, j, k cyclic), i.e. it is proportional to the angular momentum of the particle.
The standard spin–orbit coupling in quantum mechanics due to an electric potential

V (q) takes the form

H
(LS)
QM = h̄e

4m2c2q

dV (q)

dq
L · σ. (4.16)

In contrast with this, the spin–orbit coupling required by (4.12) is

H(LS) = e

m

U(q)

q
L · σ. (4.17)
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If we now look for adirect identification

U(q) → h̄

4mc2

dV (q)

dq
U2(q) → 2mc2

e
V (q) (4.18)

we getU(q) = (4m2c3/h̄e)q. This system corresponds to a harmonic oscillator with
frequencyω = 4mc2/h̄. This result can be interpreted by saying that the harmonic oscillator
would be supersymmetric if the ground-state energy is sufficient to create a pair [12, 13].

Notice that the spin–orbit coupling introduces a correction to the result given in (4.4)
for the Coulombfield,

−Ze
2

q
→ − h̄e

2m

(
2mZe/h̄

q

(
I + 1

h̄
L · σ

))
= −Ze

2

q

(
I + 1

h̄
L · σ

)
(4.19)

associated to the8+ wavefunction component. Thus the resulting effective potential will
strongly depend on the values of the orbital and total angular momentaj, l of the state
system (see section 5 for the solution of the corresponding relativistic problem).

5. The relativistic case for a spin-12 particle

Our considerations can also be extended to relativistic quantum mechanics. In the case of a
Dirac particle we already count with a 4×4 (formally) tracelessHamiltonian. Here it seems
natural to also look for appropriate 4× 4 (formally) tracelessmomentum and coordinate
operators. To this end we notice that the Dirac wave equation can be written as

H9 = (cΣ · P +mc2β)9 = ih̄∂t9 (5.1)

where

Pk ≡ −γ5pk = ih̄γ5∇k 6k = −γ5αk =
(
σk 0
0 σk

)
(5.2)

with

γ5 = −
(

0 I2×2

I2×2 0

)
. (5.3)

Thus we define
Q0 ≡ I4×4 ⊗ q0 P0 ≡ I4×4 ⊗ p0

Qi ≡ −γ5 ⊗ qi Pj ≡ −γ5 ⊗ pj
(5.4)

wherepµ = ih̄∂/∂qµ. The operatorsQµ,Pν satisfy the canonical commutation relations

[Qµ,Qν ] = [Pµ, Pν ] = 0 [Qµ,Pν ] = ih̄gµνI (5.5)

whereI =I4×4 ⊗ I andg = diag(−1, 1, 1, 1).
Next we introduce the minimal replacement

Pµ → Pµ − e

c
Aµ (5.6)

with

Aµ(q) = 0aA
a
µ(q) A†

µ = Aµ (5.7)

where the matrices0a belong to the complete set of 16Gammamatrices

I4×4 iγµ iγµγυ(υ 6= µ) γ5 iγ5γµ. (5.8)

By replacing equations (5.6) and (5.7) in equation (5.1) we get

H9 =
(
c6k

(
Pk−e

c
Ak(q)

)
+mc2β

)
9 = (ih̄∂t − eA0(q))9. (5.9)
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Note that if we demand (formally)H to be an Hermitian operator we find that

[0a,6k]A
a
k(q) = 0 (5.10)

which is a constraint on the form of the gauge potentialAk.

Equation (5.9) may be re-written as(
ϒµDµ + mc

h̄

)
9 = 0 (5.11)

where

ϒ0 = β ϒk = β6k. (5.12)

Note also that, apart from the basic condition (2.9), gauge invariance will require

[ϒµ,U(q))] = 0 (5.13)

which is a strong restriction on the space of allowed gauge transformations for a Dirac
particle. From (5.13) we find that the most general gauge transformationU has the form

U(q) = exp ig(ζ 0(q)+ ζ 1(q)β). (5.14)

On the basis of the equations (5.6)–(5.10) a variety of problems can be considered. As
an example, let us choose

A0(q) = 0 Ak(q) = iβγ5
mZe

h̄

qk

q
. (5.15)

By writing

9 =
(
8+
8−

)
(5.16)

we see that for steady states equation (5.9) consists of two coupled equations

cσ ·
(

p ∓ i
mZe2

h̄

q

q

)
8± = (E ±mc2)8∓. (5.17)

After decoupling them we find(
1

2m
p2 ∓ Ze2

q

(
I + 1

h̄
σ · L

)
+ Z2e4m

2h̄2

)
8± = (2mc2)−1(E2 −m2c4)8±. (5.18)

This may as well be written in the compact form(
1

2m
p2 − Ze2

q
K

)
9 = (ε − ε0)9 (5.19)

with

ε = E2

2mc2
ε0 = 1

2mc
2(1 + Z2α2) (5.20)

and

K = β

(
I + 1

h̄
Σ · L

)
= 1

h̄
βΣ · J − β/2 J ≡ L + h̄

2
Σ. (5.21)

Consider the non-relativistic limit. For positive energy solutions the norm of8− is small
in this limit and the wave equation reduces to (5.18) for8+. Thenε− ε0 is the eigenvalue
of the steady states of (4.12) with the corresponding potential given in (4.19).

By using the fact that

L × q + q × L = 2ih̄q (5.22)
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we find thatK is a constant of motion

[H,K] = 0. (5.23)

In addition to this we have that

[J ,K] = 0. (5.24)

Thus we can construct simultaneous eigenfunctions ofH , J2, K, J3 just as in the case of
the relativistic hydrogen atom [14]. From equation (5.21) we get

K2 = J2 + 1
4 (5.25)

so the eigenvalues ofK are

κ = ±(j + 1
2). (5.26)

The bound states are characterized byκ > 0. In this case the wavefunctions8± are
eigenfunctions ofL2 with eigenvaluesl±(l± + 1), l± = j ± 1

2. The solution of (5.18) is
then given by

8+(q) = 〈q|+, n′jj3〉 =
∑
m+,s

c(jj3; l+m+, 1
2s)qn′,l+(q)Yl+m+(θ, ϕ)χs

8−(q) = 〈q|−, n′jj3〉 =
∑
m−,s

c(jj3; l−m−, 1
2s)qn′−1,l−(q)Yl−m−(θ, ϕ)χs. (5.27)

Here c(. . .) are Clebsch–Gordan coefficients,qn′,l± are radial wavefunctions of the non-
relativistic hydrogen atom,Yl±m±(θ, ϕ) are spherical harmonics andχs correspond to the
spinors

χ1/2 =
(

1
0

)
χ−1/2 =

(
0
1

)
. (5.28)

From (5.19) the energy eigenvalues are given by

En′,κ = mc2

(
1 + (Zα)2

(
1 − |κ|2

(n′ + |κ|)2
))1/2

n′ = 0, 1, 2 . . . . (5.29)

The degeneracy of the energy levels is infinity: the levelsEn′
i ,κi

, i = 1, 2, 3, . . .,
satisfying

|κ1|2
(n′

1 + |κ1|)2 = |κ2|2
(n′

2 + |κ2|)2 = · · · (5.30)

have the same energy.
It is worth mentioning here that the Dirac oscillator [15] can also be re-obtained through

a minimal interaction of the form (5.6)–(5.7) in the Dirac equation. This is done by choosing

Ak(q) = iβγ5
mω

e
qk (5.31)

whereω is the frequency for this oscillator. This gauge field gives rise to a harmonic
oscillator with a strong spin–orbit coupling which introduces, as in the previous case, an
infinite degeneracy. This oscillator has a hidden supersymmetry, responsible for the special
properties of its spectrum [16]. In fact we can easily see that by settingU(q) = (mcω/e)q in
equation (4.12) we re-obtain, up to a constant term in the Hamiltonian, the Dirac oscillator
in the non-relativistic limit. It is interesting to note that the vector fieldAk given in
equation (5.31), is a Hermitian operator. This feature is absent in Moshinski’s approach
[15].
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5.1. The electron Zitterbewegung

We briefly discuss theZitterbewegung(trembling motion) of the Dirac electron in the
representation (5.4). To this end let us consider a free Dirac particle described by
equation (5.1). In the Heisenberg picture, the time derivative of an operator, sayT , is
given by

dT

dt
= i

h̄
[H, T ]. (5.32)

We can easily see that both the coordinate and the momentum operators arenot constants
of the motion despite the fact that the particle is free. From (5.1), (5.4) and (5.32), the
equations of motion forQk andPk are

dQk

dt
= 2imc2

h̄
βQk + c6k

dPk
dt

= 2imc2

h̄
βPk (5.33)

while from equations (5.32) and (5.33) we get

d2Qk

dt2
= 2i

h̄

(
H

dQk

dt
− c2Pk

)
. (5.34)

Let us define [17], for an observableG and for energyE

GA ≡ 1
2(G+HE−1GHE−1) (5.35)

as the observable relative to which theZitterbewegungtakes place. By using (5.4) and
(5.35) we get

ξQ ≡ Q − QA = mc2H−1βQ − ih̄c

2
H−1(Σ − cPH−1)

ξP ≡ P − PA = mc2H−1βP (5.36)

with

Tr(ξQ) = Tr(ξP ) = 0. (5.37)

This result strongly differs from the usual expressions [17]. In particular the (odd) position
and momentum operatorsQ, P are themselves present in the correspondingZitterbewegung
coordinates.

6. Final comments

In this paper, we have studied minimal interactions in a wide class of quantum systems
characterized by position and momentum operators defined as the direct product of a
(Hermitian and unitary) finite traceless matrix and an ordinary canonical coordinate. This
approach allows us to obtain in a simple fashion supersymmetric systems in quantum
mechanics. However, we are not restricted only to this class of systems as was shown
in the examples given in sections 3.2 and 4.1. In fact, equations (2.1) and (2.2) also include
ordinary minimal interactions. In section 2 we worked out in detail the bound states of a
two-level atom interacting with a two-mode electromagnetic field in a particular familiar
configuration. This example suggests a useful gauge approach to some problems in cavity
QED. A promising natural development of the present work is its extension to relativistic
quantum field theory. We hope to report on such an extension elsewhere.
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